3 resultados para Fructose-1,6-bisphosphate

em Universidade Complutense de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we provide simple and precise parametrizations of the existing πK scattering data from threshold up to 1.6 GeV, which are constrained to satisfy forward dispersion relations as well as three additional threshold sum rules. We also provide phenomenological values of the threshold parameters and of the resonance poles that appear in elastic scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present Submillimeter Array [C II] 158 μm and Karl G. Jansky Very Large Array 12^CO(1-0) line emission maps for the bright, lensed, submillimeter source at z = 5.2430 behind A 773: HLSJ091828.6+514223 (HLS0918). We combine these measurements with previously reported line profiles, including multiple 12^CO rotational transitions, [C I], water, and [N II], providing some of the best constraints on the properties of the interstellar medium in a galaxy at z > 5. HLS0918 has a total far-infrared (FIR) luminosity L_FIR(8–1000 μm) = (1.6 ± 0.1) × 10^14 L_☉ μ^–1, where the total magnification μ_total = 8.9 ± 1.9, via a new lens model from the [C II] and continuum maps. Despite a HyLIRG luminosity, the FIR continuum shape resembles that of a local LIRG. We simultaneously fit all of the observed spectral line profiles, finding four components that correspond cleanly to discrete spatial structures identified in the maps. The two most redshifted spectral components occupy the nucleus of a massive galaxy, with a source-plane separation <1 kpc. The reddest dominates the continuum map (demagnified L_FIR, component = (1.1 ± 0.2) × 10^13 L_☉) and excites strong water emission in both nuclear components via a powerful FIR radiation field from the intense star formation. A third star-forming component is most likely a region of a merging companion (ΔV ~ 500 km s^–1) exhibiting generally similar gas properties. The bluest component originates from a spatially distinct region and photodissociation region analysis suggests that it is lower density, cooler, and forming stars less vigorously than the other components. Strikingly, it has very strong [N II] emission, which may suggest an ionized, molecular outflow. This comprehensive view of gas properties and morphology in HLS0918 previews the science possible for a large sample of high-redshift galaxies once ALMA attains full sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the stellar and star formation properties of the host galaxies of 58 X-ray-selected AGNs in the GOODS portion of the Chandra Deep Field South (CDF-S) region at z ~ 0.5-1.4. The AGNs are selected such that their rest-frame UV to near-infrared spectral energy distributions (SEDs) are dominated by stellar emission; i.e., they show a prominent 1.6 μm bump, thus minimizing the AGN emission "contamination." This AGN population comprises approximately 50% of the X-ray-selected AGNs at these redshifts. We find that AGNs reside in the most massive galaxies at the redshifts probed here. Their characteristic stellar masses (M_* ~ 7.8 × 10^10 and M_* ~ 1.2 × 10^11 M_☉ at median redshifts of 0.67 and 1.07, respectively) appear to be representative of the X-ray-selected AGN population at these redshifts and are intermediate between those of local type 2 AGNs and high-redshift (z ~ 2) AGNs. The inferred black hole masses (M_BH ~ 2 × 10^8 M_☉) of typical AGNs are similar to those of optically identified quasars at similar redshifts. Since the AGNs in our sample are much less luminous (L_2–10 keV < 10^44 erg s^−1) than quasars, typical AGNs have low Eddington ratios (η ~ 0.01-0.001). This suggests that, at least at intermediate redshifts, the cosmic AGN "downsizing" is due to both a decrease in the characteristic stellar mass of typical host galaxies and less efficient accretion. Finally, there is no strong evidence in AGN host galaxies for either highly suppressed star formation (expected if AGNs played a role in quenching star formation) or elevated star formation when compared to mass-selected (i.e., IRAC-selected) galaxies of similar stellar masses and redshifts.